
Web Application for Aqualab 
Sensor Monitoring and 
Analysis - Milestone 1

Ruth Garcia, Haley Hamilton, Greg Thompson



Milestone 1 Overview:
Compare and select technical tools for:

-communicating with sensors, displaying the data, data analysis tools, user
interface, recording data, and accessing recorded data

Provide small ("hello world") demo(s) to evaluate the tools for:
-communicating with sensors, displaying the data, data analysis tools, user
interface, recording data and uploading to cloud, accessing recorded data

Resolve technical challenges: 
-Connecting to different sensors via different APIs/connections and libraries,
Collecting data and displaying it accurately in real time, Hosting a server for
24/7 access that is accessible anywhere, Displaying/plotting data over time in an
easy to read graph

Compare and select collaboration tools for software development, documents/ 
presentations, communication, task calendar

Create Requirement Document, Design Document, Test Plan



Collaboration Tools

● Code Development and Code Collaboration:

○ Github

○ Visual Studio Code/personal IDE

● Task Management and Task Calendar:

○ Jira



Technical Tools

● Communicating with sensors: 

○ Water Quality Sensor - Manta+40 sensor, RS232-USB connection, pyserial library

○ Air Quality and Pressure Sensor - Vernier sensors, Arduino Interface Shield and 

Arduino hardware, USB connection, pyserial library and Arduino code

● Displaying the data: Plotly library for Python.

● Data analysis tools: Pandas library for Python.

● User interface: React/JavaScript.

● Recording and Accessing data: MongoDB

● General Framework: MongoDB Database + Flask Backend + React Frontend



Demos: 
● Displaying data with Plotly graph proof of concept:



Demos: 
● Framework proof of concept (basic CRUD operations):



Demos: 

● Communicating with sensors 

proof of concept:



Requirements



External Interfaces: 
● User Interfaces: User interacts with software via a different screens/pages of the web app (click 

through screens, click buttons, and submit input)

● Hardware Interfaces: Interfaces with the sensors (water quality, air quality, and pressure) using 

wired connections (RS232-USB, Arduino/Arduino Interface Shield)

● Software Interfaces:

○ Interfaces with APIs/ libraries for sensors (e.g. pyserial). 

○ Interfaces with database (MongoDB), backend (Flask),  and frontend (React)

● Communications Interfaces:

○ HTTP/HTTPS protocol for secure web application communication

○ Communicate with users via phone/email push notification



Functional Requirements:
● Sensor Connections:

○ REQ1-3: The system shall utilize the necessary physical hardware as well as libraries or API’s 

to connect with and read from the sensors

○ REQ4-5: The system shall allow Admin users to input connection information about the 

sensors so the system can connect to them and configure the number/type of sensors.

● Monitoring Current/Recent Sensor Data:

○ REQ-6: The system shall display the current and recent measurements read from the sensors.

○ REQ7-8: The system shall allow Admin users to enter desired ranges/values for each sensor 

and alert users if the sensor data does not fall within the specified range/value via an on 

screen alert and a push notification.



Functional Requirements:
● Analysis of Past Measurements:

○ REQ9-11: The system shall record past measurements for the sensors to a database, plot all 

recorded data in a graph, and receive user input to filter through data 

○ REQ-12: The system shall use recorded data to calculate and display relationships between 

sensor data as requested by the client.

○ REQ-13: The system shall allow users to export collected measurements (filtered or 

unfiltered) into a CSV file that can be downloaded to their computer.

○ REQ-14: The system shall allow the Admin user to change the frequency of when data is 

recorded to the database.



Functional Requirements:
● Mitigate Disk Overflow Risk:

○ REQ15/16: The system shall display how much local disk storage is currently being taken up and 

alert the user when its getting full.

○ REQ17-18: The system shall have a default backup method where data is uploaded to a cloud, allow 

Admin change the data cloud backup settings and move/delete recorded data.

● User Authentication and Security:

○ REQ20, 23: The system shall allow users to log in and specify receiving email or text notifications.

○ REQ-21: The system shall allow Admin users to create a new user.

○ REQ-22: The system shall have three different role types, Admin, Operator, and Observer, each 

with different levels of user privileges and access. 

○ REQ-24: The system shall log user login/logout activity.



Non-Functional Requirements:
● Performance Requirements - ensure optimal user experience and efficiency

○ display data from the sensors soon after reading data 

○ respond to user requests and data inputs quickly 

● Safety Requirements - imperative to exercise caution around the computer, wires, and other equipment. 

(Aqualab = large tanks of water)

● Security Requirements - important for only registered users to have access to system, they are able to 

access only the features associated with their user role.

● Software Quality Attributes -

○ user-friendly user interface that is easy to navigate and intuitive.

○ system shall be scalable, reliable, and robust



Design



Diagrams: 



Diagrams: 



UI Mockups: Home Page



UI Mockups: Sensor View



UI Mockups: Analysis Tool



UI Mockups: Login Page



UI Mockups: Settings



UI Mockups: User Options



Database Design



Testing



Test Levels

○ Testing Levels:

■ Unit Testing: verifies individual components and modules

■ Integration Testing: Verifies interactions between modules

■ System testing: Verifies the system as a whole

■ Acceptance testing: Validates the system meets client expectations



Testing Methods

● Testing Methods:

○ Manual Testing: necessary to validate UI, interaction, and user experience

○ Automated Testing: For frequent, repeatable test cases

● Types of Testing:

○ Functional testing: Will verify that all features work as required

○ Performance testing: Will evaluate system performance under load 

○ Data Integrity Testing: Will ensure the accuracy and completeness of data collection 

and analysis.



Test Items

● User Management (User creation, Role assignment, and Permissions)

○ Admin, operator, and observer roles

● Sensor Connectivity

● Monitoring and Display of Sensor Data

● Analysis of Past Data

● Disk Overflow Mitigation

● User Input and Alert Management

● User Action Logging



Milestone 2:

● Implement, test, and demo Communicating 

with Sensors

● Implement, test, and demo User Interface

● Implement, test, and demo Recording Data

● Implement, test, and dem Uploading to Cloud



Questions?


